Journal of Organometallic Chemistry, 93 (1975) 297–308 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

¹⁹F AND ³¹P NMR SUBSTITUENT EFFECTS IN THE *N*-ARYL-, *N*-(TRI-ARYLMETHYL)-, AND *N*-(TRIARYLSILYL)-TRIARYLPHOSPHIN-IMINES

S. YOLLES* and J.H.R. WOODLAND

Department of Chemistry, University of Delaware, Newark, Delaware 19711 (U.S.A.) (Received January 24th, 1975)

Summary

Substituent effects in the N-aryl-, N-(triarylmethyl)-, and N-(triarylsilyl)-triarylphosphinimines have been investigated by 19 F and 31 P NMR.

The para ¹⁹F substituent chemical shift (SCS) of the *N*-(*p*-fluorophenyl)triarylphosphinimines show that the triarylphosphinimine group is a good supplier of electron density by induction and by resonance. ³¹P SCS indicate that in the protonation of *N*-(*p*-fluorophenyl)-tris(*p*-methoxyphenyl)phosphinimine, the positive charge is localized on the phosphorus atom.

Interposition of a $Ph_2C=$ group between the fluorophenyl and the triarylphosphinimine groups in the above compounds produces a deshielding of the para ¹⁹F nucleus, which is attributed to loss of resonance. Interposition of a $Ph_2Si=$ group between the above groups produces a large deshielding effect, which is best explained by the withdrawing of electron density into vacant silicon acceptor orbitals.

The silicon para 19 F phenyl SCS of the *N*-(triarylsilyl)triarylphosphinimines do not show evidence supporting a resonance structure between silicon and nitrogen.

The range of the silicon para ¹⁹F phenyl SCS in the series of compounds $FC_6H_4SiPh_2-N=P(C_6H_4Y)_3$, where Y is H, OCH₃, F, or Cl is over 1 ppm and the ¹⁹F shift on changing substituent Y is concentration independent. The deshielding of the phosphorus para fluorophenyl groups vs. the meta fluoro groups may be explained by a mechanism similar to that advanced for the silicon fluorophenyl group; namely, withdrawing of electron density into vacant phosphorus acceptor orbitals.

 ^{31}P SCS of the N-(triarylsilyl)triarylphosphinimines do not rule out a resonance mechanism operating over the entire 11 bonds of these silicon compounds, although other explanations are also plausible.

Introduction

Previously reported [1] transmission effects in triarylsilanes suggested a resonance mode of transmission. However, as with all investigations of substituent effects where the change of substituent occurs at or near the detector site, questions of structural effects at the detector site, classical inductive influences, contributions from "no-bond resonance" and local polar effects make unambiguous interpretations difficult. What is needed is a system where the change in substituent is at a distance large enough to minimize the aforementioned influences. Furthermore, a system was desired where the silicon—donor interaction could be examined by comparison with a similar carbon system. For these reasons, the ¹⁹F and ³¹P NMR of the following three classes of phosphinimines were investigated:

A. N-Aryltriarylphosphinimines (Ia-d, Table 1)

B. N-(Triarylmethyl)triarylphosphinimines (IIa-h, Table 2)

C. N-(Triarylsilyl)triarylphosphinimines (IIIa-t, Table 3)

Binding energies determined by ESCA (Electron Spectroscopy Chemical Analysis) indicated very high electron density at the nitrogen in compound IIa (N_{1s} 397.0 eV) and in compound IIIa (N_{1s} 396.8 eV; reference C_{1s} binding energy = 285.0 eV). The ionization energy for N_{1s} in CN^- is 399.5 eV. Therefore, these types of compounds may provide an excellent opportunity for investigation of a $p \rightarrow d \pi$ -type interaction involving silicon 3d, nitrogen 2p orbitals.

Experimental

General

Melting points are uncorrected. Analyses were performed by MHW Laboratory, Garden City, Michigan and by Micro-Analysis, Inc., Wilmington, Delaware. The ¹⁹F NMR spectra were obtained on a Bruker Model HFX-90 spectrophotometer at 84.6 MHz (a) in the continuous wave mode using a Nicolet Model 1085 computer as a time-averaging system, or (b) in the Fourier mode with protons broad band decoupled at 90 MHz using a Bruker Model BSV-2 decoupler. Selected ¹⁹F spectra were obtained using a Varian HR60 operating at 56.4 MHz. The ³¹P spectra were recorded with the Bruker HFX-90 operating at 36.43 MHz in the Fourier mode with protons broad band decoupled at 90 MHz. Selected duplicate ³¹P spectra were obtained on a Varian Model HA-100 operating at 40.5 MHz in the CW mode utilizing a Varian C-1024 time-averaging system. Chemical shifts obtained by pulse methods are reported to the nearest address. Unless otherwise noted, the solvent used to provide a deuterium lock signal was NMR grade chloroform-*d* containing by volume 4% trichlorofluoromethane. All compounds reported were soluble in chloroform-d to at least 5 wt. %. ¹⁹F substituent chemical shifts (SCS) were determined at concentrations of 5 to 1wt. % and extrapolated to infinite dilution, using fluorobenzene as the reference. ³¹P SCS were determined on 0.05 M to 0.02 M solutions using 85% phosphoric acid as the external reference. The reported compounds show only small (less than 0.15 ppm) concentration effects in chloroform-d for the 19 F spectra over the concentration range investigated. The ³¹P spectra show a concentration effect of 0.3 ppm or less. Positive ¹⁹F and ³¹P chemical shifts are downfield

from the reference compound. All the chemical shifts are reported in ppm.

The ESCA equipment and techniques used to obtain the data presented in this work have been described elsewhere [2]. All compounds were further characterized by mass spectrometry, ¹H NMR, infrared analysis, and ¹³C NMR where applicable. Intermediates whose preparations are not described in this section were reported in ref. 1 or purchased from commercial suppliers and recrystallized or distilled as required. No attempt was made to achieve maximum yields in the preparative procedures.

Syntheses

N-(p-Fluorophenyl)- and N-(m-fluorophenyl)-triphenylphosphinimines (Ia and Ic). Prepared as described in ref. 3.

N-(p-Fluorophenyl)-tris(p-methoxyphenyl)phosphinimine (Ib). p-Fluoroaniline (0.012 mol) and triethylamine (0.034 mol) were added to a tetrahydrofuran (THF) solution (70 ml) of freshly prepared dichlorotris(p-methoxyphenyl)phosphorane (0.01 mol) [4] and the mixture stirred under nitrogen for five days. The white precipitate formed was removed by filtration, the filtrate was reduced to one-half volume and to the residual solution an equal amount of hexane was added. An oily pink mass separated which was extracted with THF to give after evaporation of the solvent the hydrochloride of N-(p-fluorophenyl)tris(p-methoxyphenyl)phosphinimine (2.0 g) as beige, oily crystals. Ammonia was bubbled through a suspension of this hydrochloride in hexane to give a 100% conversion of the hydrochloride to the phosphinimine Ib as a light yellow oil.

N-(*m*-Fluorophenyl)-tris(*p*-methoxyphenyl)phosphinimine (Id). Prepared as described above for compound Ib using *m*-fluoroaniline in place of *p*-fluoroaniline. A 10% yield of Id as large crystals (hexane/THF) was obtained. The physical properties and N analyses of compounds Ia-d are listed in Table 1.

N-(*Triarylmethyl*)triarylphosphinimines (IIa-h). Prepared by reacting the triarylchloromethanes with the appropriate triarylphosphinimine following the procedure used by Appel et al. [4] for preparing IIa.

$(C_6H_5)_3C - Cl + 2(C_6H_5)_3P = NH \rightarrow (C_6H_5)_3C - N = P(C_6H_5)_3 + (C_6H_5)_3P = NH_2^+Ci^-$

The physical characteristics and the N analyses of compounds IIa-h are

N-AKIL-IP	(IAK I L	PHOSPHINIM	INES (18-0) AUG	H4-N=P(C6H4	1)3		
Compound	x	Y	M.p. (°C)	19 _F SCS ^a	31p SCS 0	N(%)	
						Calcd.	Found
Ia	p-F	н	134-135.5	-15.45	+4.17	3.77	3.90
Ib Ib • HCl ^c	p-F	p-OCH ₃	oil	15.79 5.88	+3.88 +40.20 ^d	3.03	3.16
Ic	m-F	H	134-136	-2.02 e	+4.65	3.77	3.49
Id	m-F	p-OCH ₃	141-142	-1.95	+4.49	3.03	2.76

TABLE 1

^a ±0.03 ppm. ^b ±0.06 ppm. ^c Hydrochloride of Ib, Found: Cl, 7.87; calcd.: 7.14%. ^d In C₆D₆. ^e J(PF) = 1.4 Hz,

수 있는 것이 같은 것이 있는 것이 있다. 이 이외 이름이 있는 것이 있는 것이 있는 것이 있다.			
	Found	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	N (%) Calcd.	2,10 2,30 2,55 2,55 2,55 2,23 2,23 2,23 2,23	
	31P SCS ^b	-12,30 -12,60 -12,12 -12,00 -12,36 -12,36 -11,95	
	19F SCS a		
⁴ 4V) ₃	M.p. (°C)	228,5-229,5 130-132 173-174 180-181 173-181 173-181 139-184 194-196 dec.	
с ₆ Н ₄ -х' с ₆ Н ₄ -с-N=P(C ₆ I с ₆ Н ₄ X''	¥	н р-ОСН ₃ н г р-ОСН ₃ р-ОСН ₃	
IMINES (Ha-h) X	×".	н р-ОСН ₃ н н н	
INIHASOHATAU	×	н Р-ОСН ₃ Н Н Н	
WETHYL)TRIA	×	н н р. ОСН3 р. Г m. F m. F	^b ±0.06 ppm.
TABLE 2 <i>N</i> .(TRIARYL	Compound	118 1116 1116 1116 1116 1116 1116	^a ±0.03 ppm.

listed in Table 2. The intermediate triarylchloromethanes for compounds IIa and IIb [5, 6], IIc [7], IId [8, 9], IIe-h [1] and the intermediate triarylphosphinimines for compounds IIa [6], IIc-e [6], and IIg [6] are known compounds.

301

tris(p-Methoxyphenyl)phosphinimine. To a solution of tris(p-methoxy-phenyl)phosphine (0.017 mol) in THF (100 ml) was added rapidly at 10°C under nitrogen a solution of hydrazoic acid (0.04 mol) in diethyl ether (100 ml) and the mixture brought to room temperature over a 3 h period. The solvents were removed under reduced pressure, the white residue was mixed with an additional amount of tris(p-methoxyphenyl)phosphine (0.017 mol) and the mixture placed in a 110°C bath. The bath temperature was raised over a 1 h period to 160°C, during which time the mixture melted and degassing occurred. The escaping gas was basic to litmus and had a definite ammonia odor indicating decomposition. The melt was allowed to cool to room temperature. Several attempts to isolate this product analytically pure failed. Nitrobenzene (45 ml) was added and the obtained solution was used to prepare compounds IIb, IIf and IIh.

N-(Triarylsilyl)triarylphosphinimines (IIIa-t). Prepared by reacting the azidotriarylsilanes with the appropriate triarylphosphine (tri-n-butylphosphine was used for compound IIIt), following two methods, based on the Staudinger reaction:

 $(C_6H_5)_3SiN_3 + (C_6H_5)_3P \rightarrow (C_6H_5)_3Si - N = P(C_6H_5)_3 + N_2$

Method A. This method is essentially the same as that described by Thayer and West [10] for preparing N-(triphenylsilyl)triphenylphosphinimine. Method B. Equimolar amounts of the appropriate azidotriarylsilane and triarylphosphine were charged into an oven-dried vacuum sublimation apparatus equipped with a magnetic stirrer. The system was placed under vacuum, then flushed with nitrogen several times. The apparatus was then placed in an oil bath at approximately 85° C and the mixture stirred under nitrogen for 72 h. By the end of the reaction period, the melt solidified and the stirring stopped.

Unreacted starting materials were removed by sublimation under vacuum (0.1 Torr or less) over a 24-48 h period. The residue was extracted with several portions of hot ether and THF. The portions were combined, concentrated, cooled and the product precipitated by addition of hexane. Typical yields were about 75%.

The m.p.'s and the analytical results of compounds IIIa-t are listed in Table 3. The intermediate azidotriarylsilanes for preparing compounds IIIa-m and IIIt and all the triarylphosphines are known compounds. The azidotriarylsilanes used for preparing compounds IIIn-s are new and were prepared as follows:

Azido(p-methoxyphenyl)diphenylsilane. A mixture of sodium azide (5.5 g), catalytic amounts of anhydrous aluminum chloride and THF (500 ml) was heated to reflux for 1 h. Sublimed chloro(p-methoxyphenyl)diphenylsilane [11] (28.6 g) was added and the heating at reflux continued for 110 h under nitrogen. The THF was removed under vacuum, dry hexane (200 ml) was added and the mixture warmed and filtered. Evaporation of the solvents from the filtrate under reduced pressure gave the azido compound, b.p. $170^{\circ}C/0.01$ Torr, in 80% yield.

Anal. Found: C, 68.76; H, 5.02; N, 12.96. C₁₉H₁₇N₃OSi calcd.: C, 68.88; H, 5.14; N, 12.69%.

	LYL)TRIARYL	VIHASOHA	IIMINES ()	IIIa-t) XC	sH4-si-N=P-C6 Ph C6H4	Н ₄ Ү Ү"		<u> </u>			
×	X	Υ'	Υ"	Method	Crystallization	M.p. (°C)	19F con d	31p soc b	N (%)		1
					108/108		2000	- 676	Calcd.	Found	[•
H	н	Н	Н	B		218-220	New York and the Arrange Arrange Array and Ar	+2,99	2,61	2,62	{
H	N-W	m-F	H-14	a		176-177	+1,83	0 ^c and -0.52 d	2,38	2,20	•
H	p-F	н	Ħ	a	THF/Hexane	190-191	+4,10	+2.38	2,63	2,66	
d	н	H	H	V	Ether/Hexano	171-174	-0.84 and -0.30 f	+3.66	2.53	2.61	-
1	F p-OCH3	p-OCH3	p-OCH ₃	۷	Ether/Hexano	130-131	-1.07 and -0.56 ⁷	+3,68	2,18	2,09	
ż,	F m-оСН ₃	1 m-OCH3	m-OCH ₃	Ø	Ethanol	104-105	-0,66	+4.51	2,18	2,39	
6	ы Б ч	Ū A	p-C]	Ē	Hexane	146-146	$-0.04, +0.23$ ¹ and ± 0.08 ^d	+1,21	2,13	2,02	
à	Р. р.F	ŋ.ŋ	p.F	B	Hexane	127-128	-0,27 ^g , -0,20 ^g , ^d +5,00 ^h and	+1.44	2,31	2,16	
ġ	Ч-Ш Р	m.F	m.F	æ	Extraction with	166-167	$+4.70^{n}$, d -0.04 ^g and	+0.30	2.81	2.26	یں بر ب
		•		1	ether	- - 	+2.07 h		1		•
Å,	F p.F	Н	H	A	Ether/Hexane	182,5-184	-0,61 ^g and +4,30 ^{f1}		2,45	2,45	
Ė	F H	H	H	<	Ethanol	192,5-195	-1.97	+4.02	2.53	2.74	
E	wond J.	9 p-UCH3	p-00H3	×	Ether/Fet. Ether	121-921	0A'T		2,17	2.38	
Ē	F p.Br	н	H	٨	1) THF/Pet,	165-167	-1,68		2,15	2.19	
					2) Acetonitrile		-				
à	OCH3 H	Н	H	a,	Ether/Hexane	141.5-143.5	-	+2,88	2,48	2,68	
Å,	OCH3 P.F	p.F	p-F	Ø	Pet, Ether	160-151,5	+4,81 and +5.05 d	+0,50	2,26	2.24	
Ó.	OCH ₃ m-F	m-F	m-F	A	Pet. Ether	114.5-116	+1,75	-0.20	2,26	2,33	
Å,	OCH3 D.F	н	H	8	Pet, Ether	141.5-143	+4,11	+2,63	2,40	2.44	
É	OCH3 P.F	g.d	p.F	Â		136-138.5	+4,84	+0,80	2,26	2.33	
Ė	OCH3 m-F	т. Т	મ-ાં	A	Pet, Ether	98-100	+1.90		2,26	2,19	
Ċ,	`	~	•	8	Hexane		-1.05 and -1.04 d	+14,81	2,83	2.60	

and a comp

I

1 l

Azido(m-methoxyphenyl)diphenylsilane. A solution of (m-methoxyphenyl)magnesium bromide (0.26 mol) in THF (500 ml) was added to diphenyldichlorosilane and the mixture heated at 42°C for 60 h. The THF was removed to approximately 160 ml and hexane (250 ml) added. The suspension was filtered, the hexane removed under reduced pressure from the filtrate and the residue distilled under vacuum. The fraction of b.p. 170°C at 0.06 Torr was added to a solution of sodium azide (4.7 g) in THF (500 ml). The mixture was heated at reflux for 69 h. The volume of THF was reduced to approximately 100 ml under vacuum, hexane (250 ml) was added, the mixture warmed, filtered and the filtrate evaporated to dryness under vacuum. Distillation of the residue under reduced pressure gave azido(m-methoxyphenyl)diphenylsilane, b.p. 180°/ 0.05 Torr.

303

Anal. Found: C, 68.85; H, 5.05; N, 12.40. C₁₉H₁₇N₃OSi calcd.: C, 68.88; H, 5.14; N, 12.69%.

Results and discussion

¹⁹F substituent chemical shifts

The ¹⁹F substituent chemical shift (SCS) of the *N*-(fluorophenyl)triarylphosphinimines (Table 1) show the para ¹⁹F isomers to be upfield 13-14 ppm in comparison with the meta ¹⁹F isomers, indicating an electron-rich para position in the *N*-aryl ring. By using the para SCS values of compounds Ia and Ic and applying the method of Taft [12], one obtains for the $-N=PPh_3$ group a σ_R^0 value of -0.45 (about that for $-NH_2$) and a σ_I of -0.20.

From the observed ¹⁹F SCS of the *N*-aryltriarylphosphinimines (Table 1), the $-N=PPh_3$ group is a good supplier of electron density by induction and resonance.

A σ_{I} of similar value (-0.18) for the -N=PPh₃ group is also obtained from the ¹⁹F SCS of compound IIe by applying the equation [1]:

para ¹⁹F SCS = 5.76 σ_{I} (X) = 4.14

which describes the linear relationship between para ¹⁹F SCS and σ_I (X) for p-FC₆H₄CPh₂X, where X is H, Cl, Br, OH, etc. The para ¹⁹F SCS of -5.17 obtained for compound IIe in benzene was used in the above equation.

A significant effect on ¹⁹F SCS is achieved by interposing a Ph₂C= or a Ph₂Si= group between the fluorophenyl and the triphenylphosphinimine groups in the *N*-(fluorophenyl)triphenylphosphinimines Ia and Ic (see Table 4). The ¹⁹F SCS listed in Table 4 show that in the *para* fluoro compounds the Ph₂C= group produces a change in the ¹⁹F SCS of +9.33 ppm and the Ph₂Si= group produces a deshielding of the ¹⁹F nucleus of +14.61 ppm, whereas in the *meta* fluoro compounds the ¹⁹F SCS remain relatively large and unaffected by the interposing of the above groups.

The deshielding in the *para* fluoro compounds containing a $Ph_2C=$ group can be attributed in large part to a loss of resonance donation from the nitrogen to the fluorophenyl group. The small deshielding in the *meta* fluoro isomers observed by interposing a $Ph_2C=$ group may be the result of a decrease in the inductive component as well. As previously proposed for the *p*-fluorophenyldiphenylsilanes [1], the large deshielding effect caused by the $Ph_2Si=$ group is 304

TABLE 4

EFFECT ON ¹⁹F SCS BY INTERPOSING A Ph_2C = OR A Ph_2Si = GROUP BETWEEN THE FLUORO-PHENYL AND THE TRIPHENYLPHOSPHINIMINE GROUPS OF COMPOUNDS Ia AND Ic

Compound	Formula ^a	¹⁹ F SCS
Ia	p-FC ₆ H ₄ X	-15.45
Ile	p-FC6H4CPh2X	-6.12
Ша	p-FC ₆ H ₄ SiPh ₂ X	0.84
Ie	m-FC6H4X	-2.02
IIg	m-FC6H4CPh2X	-1.63
lik	m-FC ₆ H ₄ SiPh ₂ X	-1.97

 $a X = -N = PPh_3$.

probably best explained by the withdrawing of electron density into vacant silicon acceptor orbitals (Structure A).

(A)

Support for the Si—aryl p-d π -interaction is given by the deshielding in the *p*-fluoro substituted silicon compounds. Such deshielding cannot be only the result of poor transmission of inductive effects through silicon atoms when compared to carbon atoms because similar values are obtained when the *meta* ¹⁹F SCS for both the *N*-(fluorophenyldiphenylmethyl)- and *N*-(fluorophenyldiphenylsilyl)-triarylphosphinimines (II and III) are compared with the ¹⁹F SCS of *m*-fluorophenyldiphenyl-methanes and -silanes previously reported [1].

The incremental difference between the para ¹⁹F SCS of silicon compound IIId and the para ¹⁹F SCS of carbon compound IIe of +5.28 ppm appears to be in good agreement with the incremental differences (+5-6 ppm) obtained for the p-fluorophenyldiphenyl-methanes and -silanes [1]. Therefore, there is no definitive evidence for a resonance-type interaction involving silicon and the nitrogen of the group $-N=PPh_3$, based on ¹⁹F SCS such as depicted in structure B:

$$FC_{6}H_{4}-Si=N_{2}-Ph_{3}$$

$$Ph$$

$$Ph$$
(B)

If such a resonance contribution is present, it is not detectable at the phenyl ring by ¹⁹F NMR chemical shift methods. Later in this paper, evidence to support structure B is presented based on ³¹P SCS data.

Further insight into the electronic effects in these molecules may be obtained by examining the ¹⁹F and ³¹P NMR of the compounds listed in Table 5.

TABLE 5

Compound	Formula ^a	¹⁹ F SCS	31 _P
Ia	FC ₆ H ₄ —N=PPh ₃	-15.45	+4.17
Ъ	FC ₆ H ₄ —N=P(C ₆ H ₄ OCH ₃) ₃ H j	15.79	+3.88
Ib • HCl	[FC ₆ H ₄ —N—P(C ₆ H ₄ OCH ₃) ₃] ⁺ Cl ⁻ Ph	5.88	+40.29
IIe	FC ₆ H ₄ C–N=PPh ₃	-6.12	10.21
IIf	FC ₆ H4Ċ—N=P(C ₆ H4OCH3)3 Ph Ph Ph	-6.36	12.30
IIId	FC ₆ H ₄ Si—N=PPh ₃	0.84	+2.99
IIIe	FC ₆ H ₄ Si—N=P(C ₆ H ₄ OCH ₃) ₃ Ph	-1.07	+3.68

COMPARISON OF THE para ¹⁹F AND ³¹P SCS OF PHOSPHINIMINES I, II AND III

^a All aryl substituents are in the para position.

Replacement of the H atoms in the phosphorus phenyl groups of the arylphosphinimine Ia with p-OCH₃ groups produces a small shielding effect for both ¹⁹F and ³¹P SCS (Ia vs. Ib). Formation of the hydrochloride of Ib results in deshielding around the *para* ¹⁹F to an extent similar to that observed by interposing a Ph₂C= group between the fluorophenyl and the triphenylphosphinimine group of compound Ia (see compounds Ib HCl and IIe). This effect most probably is due in part to a loss of the resonance component donation to the fluorophenyl group as well as to a change in induction in both cases. The ³¹P NMR indicates a shielding effect caused by the interposition of a Ph₂C= group in compound Ib (see compound IIf) and a large deshielding of the ³¹P nucleus caused by the formation of the hydrochloride of Ib. These results indicate that a significant part of the positive charge introduced by protonation is localized on the phosphorus and is not delocalized into the fluorophenyl ring.

To prove the mechanism of transmission of substituent effects in the series N-(p-fluorophenyldiphenylsilyl)triarylphosphinimines, $FC_6H_4SiPh_2$ —N=P- $(C_6H_4Y)_3$, the influence of the nature of Y on the ¹⁹F SCS was investigated. Table 3 shows the following ¹⁹F shielding order for group Y: p-OCH₃ > H > m-OCH₃ > p-F > m-F > p-Cl. The range of SCS is over 1 ppm which is relatively large when one considers the substituent-to-detector distance (11 bonds for m-Y, 12 bonds for p-Y) and the type of substituents. The ¹⁹F shift on changing group Y is apparently concentration independent throughout the concentration range investigated (between 0.73 and 7 wt. %). Replacement of two of the fluorine atoms in the trifluorophenyl groups of compound IIIh by H (see com-

pound IIIj) results in a nearly proportional reduction of the ¹⁹F SCS, indicating a cumulative transmission mechanism.

Linear regression analysis shows a better correlation of the para ¹⁹F SCS with σ^0 of Y, i.e., ¹⁹F SCS = 0.83 Σ (σ^0 of X) -0.78; correlation coefficient 0.961, than with σ , i.e., ¹⁹F SCS = 0.60 Σ (σ of Y) -0.62; correlation coefficient 0.881. The substituent constant term is expressed as a sum in order to include the monofluorinated case. The better correlation with σ^0 may indicate that the transmission occurs by a non-resonance mechanism. Further discussion on this point follows.

On the basis of pKa values for the Ph-N=P(C_6H_4Z), system (where Z = H, p-Cl or p-Br), Johnson and Wong [13] have found that basicity follows the σ scale better than σ° , suggesting that electronic effects are transferred to the nitrogen via a resonance effect. However, an investigation by Kukhar et al. [14] shows the pKa of XC_6H_4 —N=PPh₃ (where X = H, Cl, CH₃, etc.) follow σ^0 of X better than σ of X, concluding that the effect of X on pKa was primarily an inductive one. Taken together, these two studies indicate that while resonancetype transmission is possible from the phosphorus aryls to the nitrogen, electron density may be localized at nitrogen and not further transmitted via a resonance mechanism. This localization of charge at nitrogen may explain in part the high electron density at nitrogen as determined by ESCA. The ¹⁹F SCS values listed in Table 3 show that the phosphorus para fluorophenyl compounds (IIIh, IIIo and IIIr) are significantly deshielded relative to the corresponding phosphorus meta fluorophenyl isomers (IIIi, IIIp and IIIs). This behavior may be explained by a mechanism similar to that advanced for the deshielding of the silicon compounds with the fluorophenyl group at the silicon atom. Like silicon, phosphorus is capable of valence shell expansion and the deshielding of the para ¹⁹F nucleus is possibly the result of important ground state contributions of resonance structures resembling structure C:

The electron density on nitrogen is apparently not further delocalized by resonance in the aryl group at the silicon. This is supported by the small and nearly identical incremental difference in *para* ¹⁹F shift produced in replacing the three H atoms with OCH₃ groups in the phosphorus phenyl groups of *N*-(*p*-fluorophenyldiphenylmethyl)- and of the *N*-(*p*-fluorophenyldiphenylsilyl)-triphenylphosphinimines (IIe vs. IIf and IIId vs. IIIe) $p^{-19}FC_6H_4$ --MPh₂--N=P-(C₆H₄Y-*p*)₃, where M = C or Si and Y = H or --OCH₃.

Comparison of the para ¹⁹F and ³¹P chemical shifts (Table 3) of para-FC₆H₄SiPh₂—N=PPh₃ (IIId) and para-FC₆H₄—SiPh₂—N=PButyl₃ (IIIt) shows the ³¹P of the tributyl compound to be deshielded relative to the triphenyl, and the para ¹⁹F chemical shift, while indicating slight shielding in the n-butyl, remains almost unchanged. The deshielding of the ³¹P nucleus in IIId results from the loss of charge localization represented in structure C. On electronegativity considerations, n-butyl would be expected to be an electron donor relative to phenyl [15]. The ¹⁹F SCS once again suggests no resonance-type delocalization of charge from nitrogen into the fluorophenyl group at the silicon atom and is indicative of transmission primarily by the π -inductive mechanism.

³¹P Substituent chemical shifts

Comparison of the ³¹P SCS values listed in Table 5 show a shielded ³¹P nucleus in the *N*-(triarylmethyl)triarylphosphinimines relative to the *N*-aryland the *N*-(triarylsilyl)triarylphosphinimines. One explanation is that the p-d nitrogen—phosphorus interaction may be competing with a nitrogen—aryl interaction in the *N*-aryltriarylphosphinimines and with a silicon—nitrogen interaction in the *N*-(triarylsilyl)triarylphosphinimines, i.e., the resonance forms D and B are important.

A similar resonance form is not possible for the N-(triarylmethyl)triarylphosphinimines. The lack of effect on the ³¹P SCS by successive substitution of OCH₃ at the *para* position of the phenyl groups attached to carbon in the N-(triphenylmethyl)triphenylphosphinimine compounds IIa to form IIc appears to substantiate this. Unfortunately, synthetic difficulties have hampered the preparation of the analogous tri-*p*-methoxy substituted silicon compound, and the data obtained from the monosubstituted Si series are not conclusive.

The electronic effects at the para ¹⁹F and ³¹P nuclei in the series p-FC₆H₄-SiPh₂—N=P(C₆H₄Y-p)₃, are interdependent as is shown by the para ¹⁹F chemical shifts and the ³¹P chemical shifts. A least squares fit produces the relationship: ³¹P SCS = -2.56 para ¹⁹F SCS + 1.02 with a correlation coefficient of 0.965. This correlation is based on the values of ¹⁹F and ³¹P SCS of compounds IIIa-t (Table 3).

Acknowledgements

We express our appreciation to Dr. David Hercules and his group at the University of Georgia, Athens, Georgia for the ESCA data and to Dr. W.J. Freeman and Mr. Donald K. Nickerson for their assistance in obtaining the spectra. For help in synthesis we thank Messrs. Bruno A. Caputo, Jeff Taylor, and James Collings.

References

- 1 S. Yolles and J.H.R. Woodland, J. Organometal. Chem., 54 (1973) 95.
- 2 W.E. Swartz and D.M. Hercules, Anal. Chem., 43 (1971) 1066.
- 3 J.E. Leffier and R.D. Temple, J. Amer. Chem. Soc., 89 (1967) 5235.
- 4 R. Appel, B. Blaser and G. Seegemund, Z. Anorg. Allg. Chem., 363 (1968) 176.
- 5 R. Appel, G. Kohnlein and R. Schollhorn, Chem. Ber., 98 (1965) 1355.

308

- 6 R. Appel and F. Vogt, Chem. Ber., 95 (1962) 2225.
- 7 Aldrich Biochemicals, 1973. Aldrich Chemical Co. 14.405-3.
- 8 C.S. Marvel, J. Whitson and H.W. Johnston, J. Amer. Chem. Soc., 66 (1944) 914.
- 9 F. Blicke, J. Amer. Chem. Soc., 46 (1924) 1515.
- 10 J. Thayer and R. West, J. Inorg. Chem., 3 (1964) 406.
- 11 H. Gilman and G. Dunn, J. Amer. Chem. Soc., 73 (1951) 3404.
- 12 R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Andersen and G.T. Davis, J. Amer. Chem. Soc., 85 (1963) 708; ibid., 81 (1963) 3146.
- 13 A.W. Johnson and S.C.K. Wong, Can. J. Chem., 44 (1966) 2793.
- 14 V.P. Kukhar, A.A. Petrashenko, I.N. Zhmurova, A.S. Tubhar and S.N. Solodushenkov, Zh. Obshch. Khim., 40 (1970) 1969.
- 15 P.R. Wells, Progress in Physical Organic Chemistry, Vol. 6, Interscience, New York, 1968, p. 111.